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Abstract—This is a study of heat transfer in the liquid zone preceding an advancing condensation front in a
1-dim. oil reservoir undergoing a thermal recovery process such as hot waterflood, steam injection or in
situ combustion. A model is developed that allows for heat transfer by horizontal conduction and convection
in the reservoir and by vertical (conjugate) conduction in the surrounding the reservoir formations to account
for the lateral heat losses. The model is formulated in terms of an integro-differential equation involving an
integral representation of the lateral heat losses for a region with a moving boundary. According to the
magnitude of the Peclet number, and the velocity of the advancing front, various analytical expressions that
describe the temperature distribution in the hot liquid zone are derived. The discussion emphasizes the cases
Pe » 1 (high injection rates) and Pe = 1 (low injection rates). The case of arbitrary Pe is treated by a quasi-
steady state approximation

NOMENCLATURE

a, parameter of front velocity [dimensionless];
¢, velocity of moving front [dimensionless];

C, volumetric heat capacity [kgm™'s™!'°C™'];
heat capacity under constant pressure
[ml 572 °C- 1] ;

h,  reservoir thickness [m];

k,  thermal conductivity [kgms™3°C™'];

Pe, Peclet number [dimensionless];

coordinate along the radial direction [m];

~

t, time [s];

T, temperature;

U, volumetric flow rate [kgs 3°C~'];
u, flow velocity [ms™'];

v, front velocity [ms™']/[m?s™!];

x, Cartesian coordinate [m];

z,  Cartesian coordinate [m];

z;,  root of equation (34), dimensionless;

Greek symbols

«; thermal diffusivity of species i [m?s™'];

6, dimensionless time;

©, dimensionless temperature;

A, parameter defined by
[dimensionless];

u, parameter defined by
[dimensionless];

£, dimensionless space coordinate;

p,  density [kgm™3];

¢, porosity [dimensionless];

%»  dimensionless space coordinate;

w, dimensionless velocity.

equation (31}

equation  (31)

* Presently at the Departments of Chemical and Petroleum
Engineering, University of Southern California, Los Angeles,
CA 90007, US.A.
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Subscripts

i initial ;

refers to surrounding formations;
oil;

reservoir ;

steam;

water;

refers to the Cartesian coordinate x.

® g P Mo

Superscripts
indicates dimensional quantities,

INTRODUCTION

AN IMPORTANT class of petroleum recovery processes,
e.g. steam injection and in situ combustion, involve the
propagation of condensation fronts in the porous
reservoir formation. In such processes the flow field
consists of two regions separated by the condensation
front—a region occupied by steam (steam zone), and a
region occupied by the displaced liquids, petroleum
and water (hot liquid zone). Both regions are bounded
by rock formations of infinite extent which conduct
heat but are impermeable to fluid flow.

The determination of the velocity of the conden-
sation front, which is of primary importance to the
economics of the process, largely depends upon the
thermal losses to the surroundings and the heat
distributions in the steam and the hot liquid zones.
Heat transport in the hot liquid region is of particular
interest since it influences the overall heat distribution
in a two-fold manner: directly through the amount of
heat transferred across the front and subsequently
stored in the reservoir or lost to the surroundings; and
indirectly, through the amount of lateral heat losses
from the steam zone, the magnitude of which depends
upon the preheating of the rock by the liquid zone.

Solutions to the heat transfer problem in the hot
liquid zone have been obtained by means of detailed
numerical schemes, [1]. While such numerical sol-
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utions are of wide scope, in many applications a less
detailed but simpler analytical approach would be
desirable. For example, engineering type calculations
and parametric studies do not warrant lengthy and
expensive computer calculations especially when res-
ervoir properties such as geometry and permeability
are not known in detail. However, in most of the
existing analytical studies the heat transfer in the hot
liquid zone has been inadequately treated [2], or
completely ignored [3].

The present study attempts a more complete
analytical treatment of heat transfer in the hot liquid
zone preceding the condensation front. To thisend, the
heat transfer problem in the liquid zone is uncoupled
from that in the steam zone by assuming constant
temperature at the front and by treating the velocity of
the front and the fluid flux through the front as known
quantities. The first assumption 1s a common occur-
rence in most applications, while the second is justifi-
able for processes at constant injection rates at the
early and late stages of the process (see [4] for a
detailed discussion). With the aid of these simplifi-
cations the problem is formulated in terms of two
coupled partial differential equations, one for the
conductive and convective transport in the liquid
region and one for the pure conduction in the sur-
rounding formations. Analytical treatments of such
coupled equations have been previously provided only
for the case of fixed boundaries [5. 6]. The main
contribution of the present paper is to include the
moving boundary represented by the condensation
front. In approaching this more difficult problem, the
two partial differential equations are combined into a
single integro-differential equation still involving a
moving boundary. This equation is then solved in
several special cases, some of which are of direct
practical interest. The obtained solutions coupled to
integral balances across the condensation zone can be
further utilized in order to determine the velocity of the
front in several cases (see [4]).

1. MATHEMATICAL FORMULATION

Consider a 1-dim. reservoir of thickness & bounded
from above and below by impermeable rock strata
(Fig. 1). The reservoir is initially saturated by oil and
water at the initial formation temperature, T,. At time ¢
= 0, by virtue of steam injection, combustion or some
other thermal process, a condensation front of con-
stant temperature T, develops at the origin and starts
propagating inside the reservoir, which is thereby
divided into a region of constant temperature and a
zone of varying temperature (the hot liquid zone) (Fig.
1). At any stage during the process oil and water flow
continuously through the moving front and inside the
hot liquid zone, while heat flows by horizontal con-
vection and conduction in the reservoir and by vertical
conduction to the surroundings (lateral heat losses).
The heat transfer inside the hot liquid zone is described
by the usual thermal energy balance, which for a 1-dim.
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reservoir (Fig. 1) of uniform properties along the
vertical (z— ) direction reads [7]:

oT  oT' | &T 2%k, (0T
U =k 4oL <—1> (1)
z'=0

c— i
ar éx’ ox?*  h \ o

and similarly in radial geometries. The second term on
the LHS of (1) expresses heat transfer by convection
while the last term on the RHS represents the lateral
heat losses which couple heat transfer in the hot liquid
zone and the surroundings.

In the above, C is the volumetric heat capacity term
of the hot liquid zone and U the volumetric velocity of
the flowing water—oil mixture.

C= ¢wpwcpw + ¢opocpo + ¢rprcpr’
U= uwpwcpw + uopocpo’

¢W+¢O+¢r=19

while subscript 1 refers to quantities of the surrounding
formations and superscript ' denotes dimensional
variables.

1.1. Heat transfer in the surroundings

Heat transfer in the under- and over-lying for-
mations proceeds by pure heat conduction coupled
to the heat transfer in the reservoir via appropriate
conditions [ 7]. In most practical cases at the prevailing
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injection rates convection dominates over conduction
along the reservoir, and one can reasonably assume
that heat flows in the surroundings mainly by 1-dim.
conduction along the vertical coordinate z. Clearly, the
effectiveness of this approximation depends upon the
magnitude of the reservoir Peclet number. For typical
conditions of practical interest, the Peclet number is
sufficiently large, 0(10%), so that use of the above
simplification is justified when calculating the amount
of heat transferred from the reservoeir to the surround-
ings {see below and compare also with [3, 7, 8]). The
approximation has been tested in both analytical [9]
and numerical [ 1, 6] studies and found very satisfac-
tory in thermal recovery modelling. With this assump-
tion, we can evaluate the lateral heat losses, — 2k, /A
(0T",/02'),. _q, by considering the heat flux at the origin
of a 1-dim., semi-infinite heat conducting medium with
surface temperature T"{x,t} and initial temperature T,
For a continuous and smooth Y’ one obtains [7]:

NG
87 Jyao R Jo Ot J(—1T)
which gives the local instantaneous heat lossesin terms
of the temperature history at any point of the reservoir
boundaries. The above result is valid for any thermal
recovery process and may considerably facilitate heat
transfer calculations as compared, for instance, with

{10, 117. Substitutingexpression (2)into the RHS of (1)
we obiain

T T T
Cor+ U= =k-
U ax'?
2%k, 1 (YT &t
== | e (3)
h Jmay Jo &t ST —1)
and similarly for radial geometries [7].
The B.C.’s are:
¢ =0, T =T;
x" = o, T —T;
ﬁ“
x'= v{r)dr, T = T,
Jo

1.2. The assumption of constant convection

The second term in the LHS of (3} represents
convective heat transfer and is generally a function of
both independent and dependent variables, to be
determined by a simultaneous solution of the momen-
tum and thermal energy equations. To simplify the
analysis further, we introduce the customary approxi-
mation that the velocity U in linear geometries {or the
velocity U/2nr in radial geometries) and the volumet-
ric storage C defined earlier are constant with respect
to x’ {or r}, ¢, and 7. This approximation is 2 crucial
one, since it enables the consideration of the heat
transfer equation independently of the momentum
equations. The approximation can be shown [ 7] to be
justified under conditions of: (i) small differences
between the volumetric heat capacities of oil and
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water, (i) incompressible fluids, and {iii} constant {(or
slowly varying) volumetric velocities through the
front. The first two conditions are actually satisfied in
situations of practical interest. The third condition is
satisfied at large times {constant) or at small and
intermediate times (slowly varying) in processes in-
volving constant injection rates (see [4]). Introducing
the dimensionless variables:

T -1 t
T=gop ' evRy;
{(‘)lcp!) z&;}
x' Cv Ulh [a\'?
~ gty "o P () @
()
Equation (3) becomes
o, U gT_ 10T

1 8T dr
“Fha e ©

Ot f s{rydr € x

o

with
te=0, T=0;
X - 20, T-0;
i1
X = f v(t)dr, T=1,
o

A similar equation is obtained for radial geometries
[7]. Note that the dimensionless quantity Pe’ ex-
presses the product of the two ratios:

(convection x-direction) (convection x-direction)
{conduction x-direction)’ {conduction z-direction)’

Frequently, o, = a, thus Pe is the usual Peclet number.,

We have now formulated the process of heat transfer
in the hot liquid zone in terms of a single linear integro-
differential equation (5) which can be handled more
easily than a system of two PDE's, particularly in a
region with moving boundaries. This equation is
generally not amenable to analytical treatment. Par-
ticular values of Pe and a certain class of functions o{t),
however, permit analytical or asymptotic solutions for
the case of linear geometry. In radial geometry analyti-
cal solutions are possible only in the limiting situation
Pe - oc. In the following, we will consider those cases
that admit analytical solutions, It should be pointed
out that although the front velocity in a thermal
process is not known a priori (and it is actually
implicitly determined), most of the assumed profiles in
this study have direct practical significance in thermal
recovery applications [4].
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2. SOLUTION OF THE MOVING BOUNDARY PROBLEM (5)

2.1. Pe > 1 (negligible horizontal conduction)
When Pe is large, equation (5) takes the simpler
form valid for both geometries

6T+ U '8T_ 1 ("oT dz ©)
o U ex JmJodt Je—1)
in the domain 0 < 1,
1
j v(r)dr < x
0
with B.C.:
t=0, T=0;
X = 1, T-0;
T=1.

xzj v(t) dt,
[}

In the case of radial geometry x denotes nr2.

In physical terms, equation (6) corresponds to
convection-dominated reservoirs (high injection rates)
frequently encountered in thermal recovery. For exam-
ple, a typical linear steam drive involves Pe as high as
25, whereas an even higher value obtains for a typical
radial steam drive, Pe = 10320, [7]. This attaches a
particular significance to the solutions of (6) in thermal
recovery processes that operate under normal in-
jection rates.

The main difficulty associated with the solution of
(6) arises as expected from the existence of the moving
boundary. To proceed we observe that (6) is composed
of a hyperbolic part (LHS) and a sink term of the
convolution integral type (RHS). Since the initial
condition is T= 0, we expect a non-trivial solution to
exist if and only if U > 0. The non-trivial part of this
solution lies in the domain 0 <1t x <t (Fig. 2a)
outside of which T= 0. Since the variable x in the
region of interest also satisfies

J v(r)dr < x
0

a non-trivial solution exists only if

J" v(r)ydr < t. (7

0
This constraint states that heat transfer can only occur
if the convective heat wave travels faster than the
moving boundary. Introducing the new variables

0=t—x, yx=x, O,)=T(x) 8)

the region of integration becomes (Fig. 2b) 0 > 0,
y > [(8) where y = I'(0) is the image of the curve

x=C(t) = f v(t)dr,

0

under the above transformation. Thus, I'(8) is im-
plicitly defined by

y= f” o(r) de )

0
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and the corresponding boundary velocity by

_dy )
0= =T- w0

(10)

In the new coordinate system the integro-differential
equation takes the form:

0 1 [0 dr
& Jmjo ot JO—1)

0<0, TO <y (1)
with B.C.: 0 =0,© =0;

o
X = J w(tydy, O =1

0

We now claim that the moving boundary problem (11)
is equivalent to the pure heat conduction problem

e 30
8 oyt
with 1.C. 6 =0,0 =0
and BC. y > ¢, ® > 0;

0
x= j o(t)dr,

0

(12)

0=1

Indeed, by taking the Laplace Transform of (11), (12),
we see that, within a multiplicative factor, A(s), to be
determined from the moving boundary condition,
both equations give rise to the same transformed
expression :

A(s)exp {—x/5).

The uniqueness of the inverse Laplace Transform
guarantees that (12) with its boundary conditions have
the same solution (see also [12]). The moving boun-
dary problem (12) can be solved by a variety of
numerical and in some cases analytical techniques.
Analytical solution can be pursued by employing the
moving coordinates

0
0,&E=y— J w(t)dr,

0

thus immobilizing the moving origin (Fig. 2¢)

2
%—w()%=i—§2 (13)
with B.C.:
0=0, O©=0;
(—x, ©-0;
E=0, ©=1

Equation (13) admits analytical solutions for certain
classes of functions w(f). As previously indicated we
will consider cases that admit closed form solutions
while at the same time have practical application to
thermal recovery. It is understood that numerical
techniques can be used to solve equation (16) for
arbitrary front velocity, w(9).
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Fic. 2. Regions of integration for equation (6).

2.1.1. Fixed boundary. This is typical of hot water
injection (hot-waterflood). Here oft) = 0 and, by (10),
w(B) = 0. Also £ = y and (13) reads:

0 &0
80~ aer

The solution of this problem is

@(8§)~erfc{2 \/9} H(O)

or in the original variables

(14)

x
T(t,x) =erfc {2\/(1 =3
where H(t) is the Heaviside step function. Figure 3
shows temperature profiles for various times.

A solution identical to (15) has been obtained by
Lauwerier [8] by a more complicated approach. The
present method is similar and can be extended to cases
with different boundary conditions. For example,
when the boundary temperature is varying, g(t), one
can ecasily derive by superposition:

t 2
o Lo 3

g(r )

}*H(t—x), (15)

dt-H{t — x). (16)
2.1.2. Constant front velocity. A second interesting case
concerns condensation fronts advancing with constant
velocity. Such situations are encountered in thermal
processes [7] at early and intermediate times (e.g.
steam injection) or at large times (e.g. combustion)
where the front velocity may be assumed to be
constant {or “slowly varying™), v(t) = ¢. In the absence
of horizontal conduction, constraint (7) dictates ¢ < 1
and in dimensional variables

Co<U. (17)

From (10), o(f) = ¢/(1 — ¢} > 0. Thecurve C:x = ¢t
mapsonto I': y = 8 ¢/l —c¢), hence £ = y — 6
¢/(1 — ¢) and the heat transfer equation reads:

Ee)
FI2N

© ¢ e _
8 (1—c¢) 88

The solution of (18} in terms of the original variables

is[7]:

1
T(tx) = {erfc (2\/0 — x))
+ cxp{— H%C—}E(x - ct)}

| x4+ ) = 2er _
x erfc [*—«—-—mz(l e \/(t — x)}} H(t — x)

0<t, o <x

0<8, 0<{ (18)

(19)

Equation (19) provides a closed form expression for
the temperature distribution in a convection-
dominated hot liquid zone bounded by a front advanc-
ing with constant velocity. Figure 4 shows various
profiles of T vs x for various t and c. Ast — o, T(£,x)
approaches

T{tx) = exp{ )2 {x — ct)} H{t — x) (20)

{1 -

which has the form of a wave travelling with a
velocity equal to the velocity of the moving front. The

.2

08

Increasing 1
04 ¢

I
4.0

0.0 I
00 20

6.0
X

F1G. 3. Temperature profiles of equation {15)fort = 0.25,0.5,
1.0, 2.0, 40, 8.0.
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Fic. 4(a). Temperature profiles of equation (19) for ¢ = 0.2
and ¢t = 0.25, 0.5, 1.0, 2.0, 4.0, 80.
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F1G. 4(b). Temperature profiles of equation (19) for ¢ = 0.8
and t = 0.25, 0.5, 1.0, 2.0, 4.0, 8.0.

characteristic time for approaching this asymptotic
value is in dimensional variables equal to

G 5l
? PiCpr/) % '

thus, the approach to the quasi-steady state is con-
trolled solely by the front velocity and not by the net
convective heat flux (as for example in the case of zero
lateral heat losses [7]).

Similar results are expected when the time-scale of
change in the velocity profile of the advancing front is
relatively large compared to the above characteristic
time (slowly varying front velocities). In such cases one
can use the quasi-steady state solution (20) with c a
function of time to describe the temperature distri-
bution in the hot liquid zone. This quasi-steady state
approximation can be applied to a variety of thermal
recovery calculations [4, 7] and to other physical
problems [13].

The applicability of the above results is restricted by
constraint {7) requiring a positive net convective heat
flux through the front. This constraint may be violated
at early and intermediate times of a thermal process
{e.g. steam injection at constant injection rates). How-
ever, the difficulty can be circumvented by including
horizontal conduction in the description of heat
transfer, as shown below.

For future reference we consider the behavior of (19)
for small values of c. The dimensionless conductive
heat flux in this case approaches the front velocity c:

Y. C. Yortsos and G. R. GavALAS

oT
0x

i 2t
~C+ Jat exp 3
t
- %erfc {%} @1)

x =ct

[cf. equation {44)].

2.1.3. Front velocity of the form v(t) = a//(t + a*). The
class of fronts characterized by the velocity expression
v = a/\/(t + a%), a > 0, is a third case of considerable
interest, for it can fairly accurately describe the front
velocity at large times in a number of thermal recovery
processes. For example, it was shown [4] that in steam
injection the steam front velocity approaches relatively
rapidly the asymptotic form v~ a/,/t, where a is fixed
by the ratio of latent to the total heat injected. Asin the
two previous cases, this velocity profile leads to an
analytical solution.

In the present case, the curve C described by: x =
— 2a* + 2a/(t + a*),mapsonto I': y = 2a,/6. From
(10) we obtain w(f) = a/\/0 and & = y — 2a,/6. Note
that the constraint (7) is satisfied for all a > 0. The
subsidiary equation (13)

® a 0© &*e

o8 J8 o Toag
admits a similarity solution in terms of n = &/2,/6 + a.
In the original variables, one obtains

22)

Tit,x) = erf il /f ‘H 23
(t.x) = erfc m‘erca {(t —x) (23)

on ~2a + 2a/(t + a*y < x

Expression (23) is identical within a multiplicative
constant with Lauwerier’s solution, (15), obtained for
fixed fronts. In Fig. 5 we show typical T profiles for
various times and values of 4. Variations in g have a
significant effect. As a increases, the temperature
profiles become steeper, due to the increased front
velocity. The conductive heat flux at the origin is

oT
ox

—a?

e
wc Jmerfca

t—ajt+a*)+d*
" {(f - 2a/(t + a*) + 2@3:2} 24

and has the asymptotic behavior

oT
Ox

This asymptotic expression also applies to the problem
including horizontal conduction for the case Pe =1
(see section 2.2.3).

Equations (23) and (24) and particularly their
asymptotic limits were used in determining the be-
havior of the steam front velocity at large times in
1-dim. steam injection [4].

1 e

{nt)'? erfcd

xe(’

2.2. Finite Pe (includes horizontal conduction)
As previously noted, constraint (7) restricts some-
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F1G. 5(a). Temperature profiles of equation (23) for a = 0.5
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F1G. 5(b). Temperature profiles of equation (23} for a = 1.5
and t = 0.25, 0.5, 1.0, 2.0, 4.0, 8.0.

what the applicability of the above results. To include
processes whose parameters do not satisfy (7) we
proceed with the study of eqn. (5) for finite Pe. Such an
analysis will provide an estimate of the contribution of
horizontal conduction in the reservoir at low injection
rates. As before, we regard the heat transfer in the
surroundings to be dominated by vertical conduction
alone. The addition of horizontal conduction does not
permit a uniform representation of linear and radial
geometries (in contrast 1o the previous case) ; therefore,
we will confine our investigation to linear reservoirs,
always keeping in mind that the asymptotic results as
Pe — o carry over a radial geometries. The cases to be
examined include fixed fronts with arbitrary Pe, steady
state profiles for fronts of constant velocity with
arbitrary Pe, and a typical case of low injection rates
(Pe =1}

2.2.1. Fixed boundary, arbitrary Pe. Equation (S)witha
fixed boundary is a more realistic representation of hot
water injection than the problem discussed in 2.1.1.
The solution to the present problem can be obtained
by a direct application of the Laplace transformation

with the result:
_xU 2
tU|

xPe [* Pe’r
T(tx)= m J‘ exXp [-— -—T(l
0

T dr

X erfc {m} :;375 {25)

This is similar to the expression obtained by Avdonin
[14] by different means. Equation (25) is valid for
arbitrary U, in contrast with the solution developed in
2.1.1 where the condition U > 0 was necessary for the
existence of a non-trivial solution. The latter re-
striction, of course, is of minor practical significance.

The integral in (25) simplifies considerably when Pe
= | to yield:

X .
T(t.x) = erfc (ﬁ} U<0 (26
s x
T(tx)=¢ *erfc (2——\/£> U<0 27

{see also 2.2.3.1). In Fig. 6{a) we plot profiles of T for
different times and Pe =1 in the case U >0 As
illustrated by Fig. 6(b) the profiles obtained from (26)
are close to Lauwerier’s profiles (13) except for large x,
when the heat wave penetrates farther into the un-
heated zone. As Pe increases, however, the two profiles
approach each other and as Pe — o they eventually
coincide. The convergence is faster for higher values of
Pe. It follows that the Lauwerier solution is adequate
when Pe » 1. On the other hand, for low injection
rates, Pe is of the order of unity and solutions given by
equations {25) or (26) are more accurate.

08
T
Increasing ¢
04}
09 .
00 40 80 120

X

FiG. 6{a}. Temperature profiles of equation {28 for U > §,
Pe = landt = 025 05,10, 20,40,80.
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F1G. 6(b). Temperature profiles of equation (26} for U > 0,
Pe = 1, (upper curve) and equation {15} (lower curve), at

t =80
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2.2.2. Constant front velocity, asymptotic solutions for
arbitrary Pe. The inclusion of horizontal conduction in
the case of a constant velocity boundary allows for the
derivation of explicit but rather cumbersome ex-
pressions. To simplify the discussion we elect to study
the simpler problem of asymptotic solutions for large
times. Introducing the moving coordinates ¢, ¢ =
X — c¢t, we rewrite {5) and the B.C. as:

oT (U _NoT_ 1 &T
ar - \JU| & Per o

"ot dr
wﬁj‘og[‘[,é+(t—f)c]m

¢ [tar dr
-+ \/7'[ J‘O % [T,é + ([ — T)C] 7(}‘“;—;), (28)
t=0, T=0;
E— o, T-0;
E=0, T=1;

where ¢ is the velocity of the boundary. As t — o,
equation (28) becomes
( U or 1 &#T ¢
e O fe = e
Ul ¢ Pe* 2 Yn

. oT de
1 — — )] e
o L gt et=nl gy @)
or after rearrangement
U \T_ L oT
U]~ ¢)a " P oz
Je (2T, do
+ \//7: o 36 (g + 6) \/O" (30)
with B.C.:
E— o, T-0;
E=0, T=1

The solution of this integro-differential equation in
one independent variable provides the asymptotic
solutions. In constrast to (17), ¢ is not bound by any
constraint.

Introducing the notation:

aT
X = éa QS(X) = Q’

Je _ 1
R
U] vl

where ¢ # U/|U| and specifying without loss in gen-
erality ¢ > 0, we obtain

,’{:

$x) = ud'(x) + ﬁ Lm (o + %) :d/% a1

In Appendix A we show that equation (31) can be
reduced to the ODE

2

2 1 A
¢(x) = —d"(x) + 5 ' (x) + 5 d(x) =0 (32)
T I T

which admits the general solution

¢(x) = A exp (z;x) + A, exp (z,x) + A;exp(z3x)
(33)

where z,, z,, z; are the roots of:

122
z(z»-) +— =0
H “

Returning to the original notation and integrating,
we get a physically acceptable solution,

T(E) = exp(z,8) (335)

where z, is the real negative root of (34). Values of z,
for various values of Pe, ¢ are shown in Tables 1 and 2.
As expected, the larger Pe and/or c¢ is, the steeper the
temperature gradient at the moving origin. The results
obtained should agree with the solutions discussed in
2.1.2. Indeed, when Pe— oo, then u— 0 and (34)
admits the unique solution z = — 42, hence

(34)

T(&; Pe— m)zexp[—ﬁf} {36)

which is identical to expression (20). In Fig. 7 we show
asymptotic profiles for various Pe. As Pe increases, at
constant ¢ < 1, the temperature profiles approach the
solution (20) which was obtained by neglecting hori-
zontal conduction. The agreement is better for large Pe
and small ¢ (Table 2). On the other hand, for small
values of Pe (Table 2), the difference between the
gradients given by equations (20) and {35)is significant
and should be properly taken into account when
designing a thermal recovery process at low injection
rates.

The profiles (35) can be used to describe the
temperature distribution in thermal processes in which
the front has a constant (or “slowly” varying) velocity
and the injection rates are low [Pe = O(1)], or the
injection parameters do not satisfy constraint (7). In
this sense, they complement the quasi-steady results
obtained in 2.1.2 for the case of negligible horizontal
conduction (high injection rates). An application of
this quasi-steady state approximation in estimating
the velocity of the steam front at early and intermediate
times of a steam drive was presented in [4] The
applicability of the approximation clearly requires
that the characteristic time of approach to the asymp-
totic solution is small enough compared to the time-
scale of change of the front velocity. To obtain an
estimate of the latter characteristic time one could rely
on the analysis presented in 2.1.2 (Pe — oc) and on the
following discussion of the special case Pe = 1. The
desired estimate for other values of Pe is expected to lie
between the results corresponding to the two extreme
cases Pe = 0, Pe = 1. One can then develop a cri-
terion that defines the region of validity of this quasi-
steady state approximation [4].
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Table 1. Values of z, for Various Values of Pe, ¢
c=0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1.00
Pe =10 —0.12311 —0.31009 —0.60185 —1.0724 —1.8591 —32130 —55414 —93114 —147236 —255443
Pe =317 —0.12342 — 031225 061117 —1.1070 —19842 —3.6819 —74074 —169905 —43.627 ~—100.0000
Pe— o« —0.12345 —0.31250 —0.61224 —1.1111 —2.0000 —37500 —7.7777 —20.0000 —90.000 —
Table 2. Values of z, for Various Values of Pe, ¢ 1/U
L{T} = A(s)exp<| S| = —1 )= /s |x (37)
AN Y
c . Pe zZ,
100 10 9910 where A(s) is an unknown function to be determined
10 317 —993 from the boundary conditions. When U > 0 (37)
1 —100 becomes
0.317 —-10.21
1 10 -910 LT} = A(s)exp [ —x /5] (38)
317 -93 o ,
1 —10 which implies that T(t,x) satisfies the pure heat
0.317 —1.11 conduction equation
0.1 10 —4.64 R
3.17 —4.64 oT o0*T
_ —=_— (39)
! 1 ot ox?
0.317 —-0.21
10 -0.1231 In other words, in the special case Pe = 1, the lateral
f'” :8'}231 heat losses are exactly balanced by the convective heat
0.317 ~0.050 flux and, as a result, heat transfer is governed by pure
0.1 Pe — oc —0.1234 heat conduction along the horizontal coordinate x. On

We complete the study of heat transfer in the hot
liquid zone by considering a special case (Pe =1)
which leads to exact solutions and may be considered
as representative of thermal recovery processes at low
injection rates.

2.2.3. Pe =1, arbitrary velocity. When Pe =1 the
integro-differential equation (5) admits a simple sol-
ution. To show this we take the Laplace transfor-
mation of (5) with respect to time. The resulting
expression is generally very complicated but for Pe
=1 it assumes the simpler form

1.0

the other hand, when U < 0 (e.g. reverse combustion),
(37) implies

oT 25T T T 40
ot ox  ox? + (40)
Before exploring various special cases of boundary
motion, we restate the conditions under which the
interesting case Pe = 1 arises. By definition, Pe =1
implies [U| = 2k,/h\/(a/a, ), which for the usual case
a=o, shows, in a qualitative sense, why convection
counterbalances heat losses to the surrounding
formations.

0.8

06

04—

02—

0.0 1 ]

Increasing Pe

|

0.0 0.05 Q.10

Q.5 020

FiG. 7. Temperature profiles of equation (36) for Pe = 1, 3.17, 10, 31.7 (upper four curves), and of equation
(20) for ¢ = 0.1 (lower curve).



314

Fixed boundary. This problem has been discussed in
2.2.1 for the case of arbitrary Pe. The results of that
section take a particularly simple form when Pe = 1.
In light of the above analysis one can easily deduce that
expressions (26), (27) are the solutions of equations
(39) and (40).

Constant front velocity. When uv(t) = ¢ we can use the
moving coordinatest, £ = x — ct to obtain the familiar
equation
T T o*T
e =
ot o o&?
which by direct application of the Laplace transfor-
mation yields:

U>0 1)

T= % {erfc <2x7> +exp[— clx — ct)]

x erfc <%‘l>} ,ct<Xx. (42)

In the limit of large times this reduces to the steady
state solution:

T=exp[— c(x — c1)] 43)

in accordance with (35). The conductive heat flux
through the origin

oT

4 | c?t
CEN N S
0X |y ot ¢ \/me P 4
-%rfc(%‘/’) (44)

2

tends asymptotically to —c¢. One can accordingly
estimate the characteristic time of convergence to be of

the Ordel Of
C plel al

in dimensional variables. This time is inversely pro-
portional to the square of the boundary velocity c, just
as in the case Pe —» « (see 2.1.2). The characteristic
times for Pe = 1 and Pe = ¢ are close to each other
when ¢ is small but differ considerably when ¢
approaches 1. No comparison is possible when ¢ > 1
since the analysis in 2.1.2 applies only when ¢ < L.

A comparison of the heat flux given by (44) with that
given by (21) which corresponds to Pe— o (no
horizontal conduction) is of some interest. When the
front velocity is small, the two expressions are identical
and horizontal conduction has almost no effect on the
conductive heat flux through the steam front despite
the low injection rates.

Front velocity v(t) = a//t. In the content of thermal
recovery applications it would be useful to derive the
temperature distribution for cases where the charac-
teristic times for changes in the front velocity and the
heat transfer are comparable. Analytical solutions in

Y. C. YorTsos and G. R. GAVALAS

this case are possible when the front velocity has the
form

v(t) = a/\Jt
where a is an arbitrary constant. The practical impor-
tance of these fronts in 1-dim. steam injection has been
emphasized in 2.1.3. and is further discussed in [4].
In moving coordinates ¢, & = x — 2a\/t the heat
equation (39) becomes

0T a T T
o JrooE o8

the solution of which is obtained as before

T(t,x) = erfc {5%7} /crfc a

with a dimensionless conductive flux at the origin

oT
Ox

45)

1 exp(=d?)
x =2/t \/7[[

A remarkable similarity between expressions (46) and
(24), (Pe — oc), exists in the limit of large times. As ¢
increases, the front velocity in 2.1.3 approaches a/./t
while the dimensionless conductive heat flux in (24)
approaches that of (46). The implication of this result is
quite significant : it shows that in cases where the front
velocity takes the asymptotic form a/./t the heat
transfer is not appreciably influenced by the inclusion
of horizontal conduction. This conclusion is expected
to hold for any value of Pe in the range [1,oc]. On the
other hand, one should be careful not to discount the
effect of horizontal conduction on the rate of con-
vergence to the asymptotic state. It turns out that the
larger the value of Pe, the faster the convergence to this
state, while for Pe=1 the convergence is very slow and
the asymptotic state cannot be attained within practi-
cally realistic times.

(46)

erfca

3. CONCLUSIONS

(1) Heat transfer in the hot liquid zone of a 1-dim.
reservoir undergoing a thermal recovery process in-
volving a moving condensation front can be described
by a single integro-differential equation with a moving
boundary. Closed form expressions for the tempera-
ture distribution can be derived for the following
cases:

(a) When the dimensionless parameter Pe, that
characterizes the importance of horizontal convection
relative to horizontal conduction, is large (high in-
jection rates). Analytical solutions have been obtained
for a fixed front, a constant velocity front and a front
moving according to the form a/,/(t + a?). The result-
ing expressions are useful in modelling hot waterflood,
steam injection and combustion (both forward and
reverse) under high (typical) injection rates.

(b) When horizontal conduction cannot be neglec-
ted (low injection rates), quasi-steady state tempera-
ture profiles have been derived for a front moving at
constant velocity. Together with the quasi-steady
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profiles for Pe — oc these expressions are useful in
describing the heat transfer in the hot liquid zone at
early and intermediate times.

(c) For the special case Pe = 1 representative of low
injection rates particular solutions have been obtained
for fixed boundary, constant front velocity and front
velocity equal to a/\/t. Possible applications include
hot waterflood, steam injection or combustion, at low
injection rates.

(2) When the front velocity does not assume the
above profiles, analytical solutions are generally un-
attainable. However, the integro-differential equation
describing heat transfer can still be reduced to the heat
conduction equation with a moving boundary in the
special cases Pe — -0, Pe = 1, which can be treated by
well established numerical techniques.

(3) Comparison of the results obtained in the
various cases above indicates that:

(a) Under normal injection conditions Pe > 1, the
effect of horizontal conduction is insignificant. Thus, it
can be neglected in calculations, provided that the
operational parameters satisfy the constraint (10).

(b) Even at low injection rates, horizontal con-
duction makes a negligible contribution under the
conditions of small and constant velocity or at large
times in the case of fronts asymptotically behaving as

a/Jt.
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APPENDIX A

Introducing the Weyl transform (Erdelyi et al. [15]) of
order § defined by

W”z{¢}5 1 * ¢lo)do

Jr Je Yo —-x)
we write equation (31) as

B(x) = pd'(x) + AW {p(x)}. (A1)
Taking the W'/ transform of (A.1) and rearranging yields

W1p(x)} = uW!{p'(x)} + 4 f &) de, (A2)

¢(x) — ud'(x) = ApW!'Hp'(x)} + 42 r #(0)ds. (A3)
Using the identity
d

— W{(x)} = W'{p'(x)} (A4)

dx
in (A.1) and combining with (A.3) we obtain
P(x) — ug'(x) = u[d'(x) — pg"(x)] + 4° f $(E)dE (AS)
After differentiation
2 1 P
X)) ——¢' )+ 5+ 5ox)=0 (A6)
U u u

which is the desired ordinary differential equation.
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TRANSFERT THERMIQUE DEVANT DES FRONTS DE CONDENSATION MOBILES DANS
LES PROCEDES D’EXTRACTION THERMIQUE DE L’HUILE

Résumé—On étudie le transfert thermique dans la zone liquide qui précéde un front mobile de condensation
dans un réservoir monodimensionnel d’huile lors d’un procédé d’extraction thermique par courant d’'eau
chaude, ou par injection de vapeur d’eau ou par combustion in situ. On développe un modéle qui traite du
transfert thermique par conduction et convection horizontales dans le réservoir et par conduction verticale
(conjugée) autour du réservoir pour tenir compte des pertes de chaleur latérales. Le modéle formulé par une
équation intégro-différentielle qui conduit a une représentation intégrale des pertes thermiques latérales pour
une région a frontiére mobile. En fonction de la grandeur du nombre de Peclet, de la vitesse du front, plusieurs
expressions analytiques décrivent la distribution de température dans la zone liquide chaude. La discussion
insiste sur le cas Pe> 1 (grands débits injectés) et Pe = 1 (faibles débits injectés). Le cas de Pe quelconque est
traité par une approximation d’état quasi-stationnaire.

WARMEUBERGANG VOR WANDERNDEN KONDENSATIONSFRONTEN
IN THERMISCHEN OLGEWINNUNGSPROZESSEN

Zusammenfassung—Dieser Bericht befaBt sich mit der Warmeiibertragung im Fliissigkeitsgebiet vor einer
fortschreitenden K ondensationsfront in einem eindimensionalen Olreservoir bei thermischen Fsrderprozes-
sen wie HeiBwasserflutung, Dampfinjektion oder Verbrennung vor Ort. Ein mathematisches Modell wurde
entwickelt, mit dem im Falle der Warmeiibertragung durch horizontale Warmeleitung und Konvektion im
Reservoir sowie durch vertikale (konjugierte) Wirmeleitung in die Umgebung der Formation des Reservoirs
die seitlichen Warmeverluste bestimmt werden konnen. Das Modell wurde in Form einer Integral-
Differentialgleichung dargestellt, welche die integrale Darstellung der seitlichen Wirmeverluste fiir ein
Gebiet mit beweglicher Grenze wiedergibt. Entsprechend der Peclet-Zah! und der Geschwindigkeit der
wandernden Front wurden zahlreiche analytische Ausdriicke, die die Temperaturverteilung in der heien
Fliissigkeitszone beschreiben, erhalten. Es werden insbesondere die Fille Pe > 1 (hohe Injektionsgeschwin-
digkeiten) und Pe = 1 (niedrige Injektionsgeschwindigkeiten) betrachtet. Der Fall beliebiger Pe-Zahlen wird
ndherungsweise quasistationir behandelt.

TEIJIONEPEHOC NMEPEJ ABUXYIIUMCA ®POHTOM KOHIAEHCALIMU
B MPOLIECCAX TEIJIOBOM PEFCEHEPALIUM MACEJ

Aunnoranns — Uccrnenyercs TensionepeHoc B XKHAKOCTH nepel GPOHTOM KOHIEHCAUMH TIPH €ro OIHO-
MEPHOM JBHXEHHMHU B PE3E€PBYape C MacjioOM B NPONECCE TEMJIOBOH PEreHepaluu Mo ACHCTBHEM NOTOKA
ropsayeil BOABI, BAYBa Napa WIH JIOKaJIbHOTO ropeHus. [1peanoxeHa Molenb, Y4HTBIBAIOLIAS NEPEHOC
Temia TEeMIONPOBOJHOCTBIO M KOHBEKUMEH B TOPH3OHTA/JbHOM HaNpaBICHHH B PE3EPByape M Temio-
NPOBOJHOCTbIO B BEPTHKA/IbHOM HAllpaBJIEHHH B OKPYXAlOLUEH pelepByap cpelle, KOTopas NO3BONseT
paccuuTaTh 0OKOBbIE [OTepH Tenna. Molenab OCHOBaHA Ha HHTErpo-AuddepeHIHanbHOM YPaBHEHHH,
B KOTOPOM MCMOJb3YETCs HHTErpasibHOE BHIPAXKEHHE U GOKOBBIX NMOTEPhL Temjia B o6nacTH ¢ ABUXY-
weiics rpaHuueii. B 3aBucHMOCTH OT BeiuuHbl yncna [lexie H cCkopocTH IBMXeHHA QPOHTA BLIBEIEHBI
Pa3jiMYHbIE AHAJIMTHYECKHE BLIPAXKCHHS, ONHKCHIBAIOLIHE PAclipeJcICHHE TEMNEPaTyp B HAaIrpeTOH XHI-
kocTH. Ocoboe BHHMaHHe yneieHo ciydasM Pe > | (Gonbmas ckopocTs Baysa) U Pe =1 (Mmanas
ckopocTb BIyBa). Ciy4aii NpOH3BOJBLHOTO 3HAY€HHS 4YHCIa Pe aHanU3MpyeTcs € MOMOUIBIO KBa3H-
CTAalMOHAPHOTO NPHOIHKEHHUS.



