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Abstract-This is a study of heat transfer in the liquid zone preceding an advancing condensation front in a 
i-dim. oil reservoir undergoing a thermal recovery process such as hot waterflood, steam injection or in 
situ combustion. A model is developed that allows for heat transfer by horizontal conduction and convection 
in the reservoir and by vertical (conjugate) conduction in the surrounding the reservoir formations to account 
for the lateral heat losses. The model is formulated in terms of an integro-differential equation involving an 
integral representation of the lateral heat losses for a region with a moving boundary. According to the 
magnitude of the Peclet number, and the velocity of the advancing front, various analytical expressions that 
describe the temperature distribution in the hot liquid zone are derived. The discussion emphasizes the cases 
Pe >> I (high injection rates) and Pe = 1 (low injection rates). The case of arbitrary Pe is treated by a quasi- 

steady state approximation 

NOMENCLATURE 

parameter of front velocity [dimensionless] ; 
velocity of moving front [dimensionless] ; 
volumetric heat capacity [kgrn-‘~-~ QT1]; 
heat capacity under constant pressure 

[ 
m2s~2”C-l]; 

reservoir thickness [m] ; 
thermal conductivity [kg m sM3 “C- ‘1; 
Peclet number [dimensionless] ; 
coordinate along the radial direction [m] ; 
time [s]; 
temperature; 
volumetric flow rate [kgse3 “C- “1; 
flow velocity [m s ‘1; 
front velocity [m s- ‘]/[m2s- ‘I; 
Cartesian coordinate [m] ; 
Cartesian coordinate [m] ; 
root of equation (34), dimensionless; 

symbols 

thermal diffusivity of species i [mZ s-l] ; 
dimensionless time; 
dimensionless temperature; 
parameter defined by equation (31) 
[dimensionless] ; 
parameter defined by equation (31) 
[dimensionless] ; 
dimensionless space coordinate; 
density [kg m-3] ; 
porosity [dimensionless] ; 
dimensionless space coordinate; 
dimensionless velocity. 

* Presently at the Departments of Chemical and Petroleum 
Engineering, University of Southern California, Los Angeles, 
CA 90007, U.S.A. 

Subscripts 

;: 
initial ; 
refers to surrounding formations; 

o, oil; 
r, reservoir ; 
S, steam ; 
W, water; 
-% refers to the Cartesian coordinate x. 

Superscripts 

indicates dimensional quantities. 

INTRODUCTION 

AN IMPORTANT class of petroleum recovery processes, 
e.g. steam injection and in situ combustion, involve the 
propagation of condensation fronts in the porous 
reservoir formation. In such processes the flow field 
consists of two regions separated by the condensation 
front-a region occupied by steam (steam zone), and a 
region occupied by the displaced liquids, petroleum 
and water (hot liquid zone). Both regions are bounded 
by rock formations of infinite extent which conduct 
heat but are impermeable to fluid flow. 

The determination of the velocity of the conden- 
sation front, which is of primary importance to the 
economics of the process, largely depends upon the 
thermal losses to the surroundings and the heat 
distributions in the steam and the hot liquid zones. 
Heat transport in the hot liquid region is of particular 
interest since it influences the overall heat distribution 
in a two-fold manner: directly through the amount of 
heat transferred across the front and subsequently 
stored in the reservoir or lost to the surroundings ; and 
indirectly, through the amount of lateral heat losses 
from the steam zone, the magnitude of which depends 
upon the preheating of the rock by the liquid zone. 

Solutions to the heat transfer problem in the hot 
liquid zone have been obtained by means of detailed 
numerical schemes, [l]. While such numerical sol- 
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utions are of wide scope, in many applications a less 

detailed but simpler analytical approach would be 
desirable. For example, engineering type calculations 
and parametric studies do not warrant lengthy and 
expensive computer calculations especially when res- 

ervoir properties such as geometry and permeability 
are not known in detail. However, in most of the 
existing analytical studies the heat transfer in the hot 
liquid zone has been inadequately treated [2], or 
completely ignored [3]. 

The present study attempts a more complete 
analytical treatment of heat transfer in the hot liquid 
zone preceding the condensation front. To thisend, the 
heat transfer problem in the liquid zone is uncoupled 
from that in the steam zone by assuming constant 
temperature at the front and by treating the velocity of 
the front and the fluid flux through the front as known 
quantities. The first assumption is a common occur- 
rence in most applications, while the second is justifi- 
able for processes at constant injection rates at the 
early and late stages of the process (see [4] for a 
detailed discussion). With the aid of these simplifi- 
cations the problem is formulated in terms of two 
coupled partial differential equations, one for the 
conductive and convective transport in the liquid 
region and one for the pure conduction in the sur- 
rounding formations. Analytical treatments of such 
coupled equations have been previously provided only 

for the case of fixed boundaries [5, 61. The main 
contribution of the present paper is to include the 
moving boundary represented by the condensation 
front. In approaching this more difficult problem, the 
two partial differential equations are combined into a 
single integro-differential equation still involving a 
moving boundary. This equation is then solved in 
several special cases, some of which are of direct 
practical interest. The obtained solutions coupled to 
integral balances across the condensation zone can be 
further utilized in order to determine the velocity of the 

front in several cases (see [4]). 

I. MATHEMATICAL FORMULATIOti 

Consider a l-dim. reservoir of thickness h bounded 
from above and below by impermeable rock strata 
(Fig. 1). The reservoir is initially saturated by oil and 
water at the initial formation temperature, T. At time t 
= 0, by virtue of steam injection, combustion or some 
other thermal process, a condensation front of con- 
stant temperature Ts develops at the origin and starts 
propagating inside the reservoir, which is thereby 
divided into a region of constant temperature and a 
zone of varying temperature (the hot liquid zone) (Fig. 
1). At any stage during the process oil and water flow 
continuously through the moving front and inside the 
hot liquid zone, while heat flows by horizontal con- 
vection and conduction in the reservoir and by vertical 
conduction to the surroundings (lateral heat losses). 
The heat transfer inside the hot liquid zone is described 
by the usual thermal energy balance, which for a 1 -dim. 

OVERBURDEN 

h 

UNDERBURDEN 

a. Linear Geometry 

OVERBURDEN 

h 

b. Radlal Geometry 

FIG. 1. One-dimensional geometries examined in section 1. 

reservoir (Fig. 1) of uniform properties along the 
vertical (z - ) direction reads [7] : 

and similarly in radial geometries. The second term on 

the LHS of (1) expresses heat transfer by convection 
while the last term on the RHS represents the lateral 
heat losses which couple heat transfer in the hot liquid 
zone and the surroundings. 

In the above, C is the volumetric heat capacity term 
of the hot liquid zone and U the volumetric velocity of 
the flowing water- oil mixture. 

C = (i%vPw~pw + &&lcpO + &P&r, 

u = UwPwCpw + %PoQm 

4, + 4, + 4, = 1, 

while subscript I refers to quantities of the surrounding 
formations and superscript ’ denotes dimensional 
variables. 

1.1. Heat transfer in the surroundings 
Heat transfer in the under- and over-lying for- 

mations proceeds by pure heat conduction coupled 
to the heat transfer in the reservoir via appropriate 
conditions [7]. In most practicalcases at the prevailing 
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injection rates convection dominates over conduction 
along the reservoir, and one can reasonably assume 
that heat Sows irx the surroundings mainly by l-dim. 
conduction along the vertical coordinate 2. Ctearly, the 
ef%ctiveness of this approximation depends upon the 
ma~itude of the reservoir Peclet number. For typical 
conditions of practical interest, the Peclet number is 
sufficiently Iarge, OfiO’), so that use of the above 
simplification is justified when ~al~uIating the amour~E 
of heat transferred from the reservoir to the surround- 
ings (see below and compare also with [3,7, S]). The 
approximation has been tested in bath analytical [9] 
and numerical [I, 6J studies and found very satisfac- 
tory in thermal recovery modeRing. With this assump 
tion, we can evaluate the lateral heat losses. - 2~,~~~ 
(XT’J~Z’)~.=~, by considering the heat flux at the origin 
of a t-dim., urns-in~nite heat conducting medium with 
surface temperature Y&t) and initial temperature q. 
For a continuous and smooth Y’ one obtains 17-J: 

which gives the local i~s~ant~eaus heat losses in terms 
of the temperature history at any paint of the reservoir 
boundaries. The above result is valid for any thermat 
recovery process and may considerably facilitate heat 
transfer caI~ulatians as compared, for instance, with 
[lo, 111. Substitutingexpression (2)into the RHSof(I) 
we obtain 

and similarly for radial geometries 1’73. 

The B.C.‘s are: 

1.2. l-&e ~ss~~p~~~~ of ~~~~r~~~ ~o~v~~t~~~ 
The second term in the LHS of (3) repre~nts 

convective heat transfer and is generally a Function of 
both inde~ud~nt and dependent variables, to be 
determined by a simultaneous solution of the momen- 
tum and thermal energy equations. To simplify the 
analysis further, we introduce the customary approxi- 
mation that the velocity U in linear geometries (or the 
velocity U/2~~ in radial geometries) and the volumet- 
ric storage C defined earlier are constant with respect 
to x’ (or r), E’, and T’. This approximation is a crucial 
one, since it enables the consideration of the heat 
transfer equation independently of the momentum 
equations. The approximation can be shown [7] to be 
justified under conditions of: (i) small differen~s 
between the volumetric heat capacities of oiI and 

water, (ii) incompressible fluids, and (iii) constant (or 
slowly varying) volumetric velocities through the 
front. The first two ~anditions are actually satisfied in 
situations of practical interest. The third condition is 
satisfied at large times (constant) or at small and 
inter~lediate times (slowly varying) in processes in- 
volving constant injection rates (see 1141). introducing 
the dimensionless variables: 

Equation (3) becomes 

with 

A similar equation is obtained for radial geometries 
173. Note that the dime~sionle~ quantity Pe2 ex- 
presses the product af the two ratios: 

(conv~tion x-direction) (convection x-dir~tio~) 

(conduction x-direction) ’ (conduction z-z= 

frequently, c+ = (xI thus Fe is the usual Peelet number, 
We have now formulated the process of heat transfer 

in the hot liquid zone in terms of a single linear integro- 
differential equation (5) which can be handled more 
easily than a system of two PDFs, particularly in a 
region with moving boundaries. This equation is 
generally not amenabie to analytical treatment. Par- 
ticular values of Pe and a certain class of functions a(t), 
however, permit analytical or asymptotic sofutions for 
the case of linear geometry. In radial geometry analyti- 
cal solutions are possible only in the limiting situation 
PP --f XL In the foilowing, we will consider those eases 
that admit analytical solutions. It should be painted 
out that although the front velocity in a thermal 
process is not known a priori (and it is actually 
implicitiy determined), most ofthe assumed profiles in 
this study have direct practical si~ific~~ in the~al 
recovery applications [4]. 
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2. SOLUTION OF THE MOVII\;G BOUNDARY PROBLEM (5) and the corresponding boundary velocity by 

2.1. Pe >> 1 (negligible horizontal conduction) 
When Pe is large, equation (5) takes the simpler 

form valid for both geometries 

in the domain 0 < t, 

L'(T) dr I X 

with B.C.: 

t = 0, T= 0; 

X’%, T-O; 

f 
x= 

s 
U(T) dr, T= 1. 

0 

In the case of radial geometry x denotes rcr2. 

In the new coordinate system the integro-differential 
(6) equation takes the form: 

ao 1 

4 

’ ?@ dr 

x= -Jrr 0 X’J(o-7)’ 
0 < 0, r(e) 5 1 (11) 

with B.C.: 8 = 0, 0 = 0; 

1 

lJ 

x= W(r)dT, @ = 1. 
0 

We now claim that the moving boundary problem (11) 
is equivalent to the pure heat conduction problem 

a3 d20 
iiB - 8x2 

(12) 
In physical terms, equation (6) corresponds to 

convection-dominated reservoirs (high injection rates) 
frequently encountered in thermal recovery. For exam- 
ple, a typical linear steam drive involves Pe as high as 
25, whereas an even higher value obtains for a typical 
radial steam drive, Pe = 10320, [7]. This attaches a 
particular significance to the solutions of (6) in thermal 
recovery processes that operate under normal in- 
jection rates. 

The main difficulty associated with the solution of 
(6) arises as expected from the existence of the moving 
boundary. To proceed we observe that (6) is composed 
of a hyperbolic part (LHS) and a sink term of the 
convolution integral type (RHS). Since the initial 

condition is T= 0, we expect a non-trivial solution to 
exist if and only if U > 0. The non-trivial part of this 
solution lies in the domain 0 < t, x < t (Fig. 2a) 
outside of which T = 0. Since the variable x in the 
region of interest also satisfies 

j_ 

f 
u(7) dt 2 x 

0 

a non-trivial solution exists only if 

with I.C. 6’ = 0, 0 = 0 
and B.C. x + K, 0 -+ 0; 

x= @ 
I 

W(r)dr, 0 = 1. 
0 

Indeed, by taking the Laplace Transform of (1 l), (12), 
we see that, within a multiplicative factor, A(s), to be 
determined from the moving boundary condition, 
both equations give rise to the same transformed 

expression : 

44 exp ( - xJs). 

The uniqueness of the inverse Laplace Transform 
guarantees that (12) with its boundary conditions have 

the same solution (see also [12]). The moving boun- 
dary problem (12) can be solved by a variety of 
numerical and in some cases analytical techniques. 
Analytical solution can be pursued by employing the 
moving coordinates 

0 
o,t = x - 47)dT, 

JO 

i 
f 

c(T)dT < t. (7) 
thus immobilizing the moving origin 

Jo 
This constraint states that heat transfer can only occur 
if the convective heat wave travels faster than the 

(Fig. 2c) 

(13) 

moving boundary. Introducing the new variables with B.C.: 

0 = t - x, x = x, @(0,x) = T(t,x) (8) 0 = 0, 0 =o; 

the region of integration becomes (Fig. 2b) 0 > 0, <+z, O-0; 
x > F(0) where x = F(Q) is the image of the curve 

5 = 0, 0 = 1. 

x = C(t) = 
s 

I 
~(7)d7, Equation (13) admits analytical solutions for certain 

0 classes of functions o(0). As previously indicated we 

under the above transformation. Thus, F(0) is im- will consider cases that admit closed form solutions 

plicitly defined by while at the same time have practical application to 
thermal recovery. It is understood that numerical 

x= u(7) dt (9) techniques can be used to solve equation (16) for 
arbitrary front velocity, w(Q). 
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FIG. 2. Regions of integration for equation (6). 

2.1.1. Fixed boundary. This is typical of hot water 
injection (hot-waterflood). Here u(t) = 0 and, by (lo), 
w(e) = 0. Also r = x and (13) reads: 

ao c ao a20 
--- -=p, O<Q, O<& (18) 
dB (1 - c) $5 $52 

The solution of (18) in terms of the original variables 
ao a20 
iiB - at2 

The solution of this problem is 

f 
@(@,<) = erfc 2Je 

i > 

or in the original variables 

T(t,x) = erfc ’ 
( 1 2JCr - x) 

(14) is I?1 : 

Tkx) = i (,rfc (FJ&> 
H(e) 

+ exp 
( 

x erfc 
wt - x), (15) [ 

fat - xl, 

0 < t, ct <x. (19) 
where H(t) is the Heaviside step function. Figure 3 
shows temperature profiles for various times. 

A solution identical to (15) has been obtained by 
Lauwerier [8] by a more complicated approach. The 
present method is similar and can be extended to cases 
with different boundary conditions. For example, 
when the boundary temperature is varying, g(t), one 
can easily derive by superposition: 

s(r - r) 

which has the form of a wave travelling with a 
velocity equal to the velocity of the moving front. The 

x Fdr .H(t - x). (16) 

Equation (19) provides a closed form expression for 
the temperature distribution in a convection- 
dominated hot liquid zone bounded by a front advanc- 
ing with constant velocity. Figure 4 shows various 
profiles of T vs x for various t and c. As t + x, T(t,x) 
approaches 

T(r,x) = exp 
I 

- (1 _’ c)2 (x - ct) 
1 

H(f - x) (20) 

2.1.2. Constun~~~on~ ttelocity. A second interesting case 
concerns condensation fronts advancing with constant 
velocity. Such situations are encountered in thermal 
processes [7] at early and intermediate times (e.g. 
steam injection) or at large times (e.g. combustion) 
where the front velocity may be assumed to be 
constant (or “slowly varying”), v(r) = c. In the absence 
of horizontal conduction, constraint (7) dictates c < 1 
and in dimensional variables 

1 

co < u. (17) 
0.0 2.0 4.0 6.0 

From (lo), w(B) = c/(1 - c) > 0. The curve C:x = et X 

maps onto I: x = 8 c/(1-c), hence 4 = x - 8 FIG. 3. Temperature profiles of equation (15) for t = 0.25, OS, 
c/(1 - c) and the heat transfer equation reads: 1.0, 2.0,4.0, 8.0. 
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0.8 

T 

04 

0.0 
0.0 2.0 4.0 6.0 

E 

FIG. 4(a). Temperature profiles of equation (i9) for c = 0.2 
and t = 0.25. OS, 1.0, 2.0, 4.0, 8.0. 

0.0 
0.0 0.4 0.8 

t 
Fk. 4(b). Temperature profiles of equation (19) for c = 0.8 

and t = 0.25, 0.5, 1.0, 2.0, 4.0, 8.0. 

characteristic time for approaching this asymptotic 
value is in dimensional variables equal to 

thus, the approach to the quasi-steady state is con- 
trolled solely by the front velocity and not by the net 
convective heat flux (as for example in the case of zero 
lateral heat losses [7]). 

Similar results are expected when the time-scale of 
change in the velocity profile of the advancing front is 
relatively large compared to the above characteristic 
time (slowly varying front velocities). In such cases one 
can use the quasi-steady state solution (20) with c a 
function of time to describe the temperature distri- 
bution in the hot liquid zone. This quasi-steady state 
approximation can be applied to a variety of thermal 
recovery calculations [4. 71 and to other physical 
problems [ 131. 

The applicability of the above results is restricted by 
constraint (7) requiring a positive net convective heat 
flux through the front. This constraint may be violated 
at early and intermediate times of a thermal process 
(e.g. steam injection at constant injection rates).‘How- 
ever, the difficulty can be circumvented by including 
horizontal conduction in the description of heat 
transfer, as shown below. 

For future reference we consider the behavior of (19) 
for small values of c. The dimensionless conductive 
heat flux in this case approaches the front velocity c: 

dT 

; 

c2t 

ax x=CL -c+,reXP -- 1 I 4 

- zerfc 1 i I cJt 
(21) 

[cf. equation (44)]. 

i ILJ 

2.1.3. Front velocity of theform v(t) = a/ J(t + a’). The 
class of fronts characterized by the velocity expression 
t’ = a/J(t -I- n’), a > 0, is a third case of considerable 
interest, for it can fairly accurately describe the front 
velocity at large times in a number of thermal recovery 
processes. For example, it was shown [4] that in steam 
injection the steam front velocity approaches relatively 
rapidly the asymptotic form tt-a/Jt, where a is fixed 
by the ratio of latent to the total heat injected. As in the 
two previous cases, this velocity profile leads to an 
analytical solution. 

In the present case, the curve C described by: .x = 
- 2a2 + 2aJ(r + a’), maps onto I-: x = 2a,,f@. From 
(10) we obtain w(0) = a/J% and < = 1 - 2a J6. Note 
that the constraint (7) is satisfied for all a > 0. The 
subsidiary equation (13) 

ao a so dZO 
---‘--=I-?; ii% 4% ag a< (22) 

admits a similarity solution in terms of? = [/2~‘% + a. 
In the original variables, one obtains 

~(~,x)=erfc~2~(~_x)}~erfca.~(r-x) (23) 

on - 2a + 2aJ(t + a’) < x 

Expression (23) is identical within a multiplicative 
constant with Lauwerier’s solution, (15), obtained for 
fixed fronts. In Fig. 5 we show typical T profiles for 
various times and values of a. Variations in a have a 
significant effect. As a increases, the tem~rature 
profiles become steeper, due to the increased front 
velocity. The conductive heat flux at the origin is 

dT e-a’ 
-- 

ax ,+<.= qG& 

’ i 

r - uJ(t + a*) + a2 
(t - 2a J(t + a2) + 2~~)~‘~ 

(24) 

and has the asymptotic behavior 

ZTI 1 e-llz 

This asymptotic expression also applies to the problem 
including horizontal conduction for the case Pe = 1 
(see section 2.2.3). 

Equations (23) and (24) and particularly their 
asymptotic limits were used in determining the be- 
havior of the steam front velocity at large times in 
l-dim. steam injection [4]. 

2.2. Finite Pe (includes horizontal conduction) 
As previously noted, constraint (7) restricts some- 
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FIG. S(a). Temperature profiles of equation (23) for a = 0.5 
and 1 = 0.25,0.5, 1.0, 2.Q4.0, 8.0. 

E 

FIG. 5(b). Temperature profiles of equation (23) for a = 1.5 
and t = 0.25, 0.5, 1.0, 2.0, 4.0, 8.0. 

what the applicability of the above results. To include 
processes whose parameters do not satisfy (7) we 
proceed with the study of eqn. (5) for finite Pe. Such an 
analysis will provide an estimate ofthe contribution of 
horizontal conduction in the reservoir at low injection 
rates. As before, we regard the heat transfer in the 
surroundings to be dominated by vertical conducfion 
alone. The addition of horizontat conduction does not 
permit a uniform representation of linear and radial 
geometries (in contrast to the previous case) ; therefore, 
we will confine our investigation to linear reservoirs, 
always keeping in mind that the asymptotic results as 
Pe -+ cx carry over a radial geometries. The cases to be 
examined include fixed fronts with arbitrary Pe, steady 
state profifes for fronts of constant velocity with 
arbitrary Pe, and a typical case of low injection rates 
(Pe = 1). 

2.2.1. Fixed boundary, ~~bitrur~ Pe. Equation (5) with a 
fixed boundary is a more realistic representation of hot 
water injection than the problem discussed in 2.1.1. 
The solution to the present problem can be obtained 
by a direct application of the Laplace transformation 
with the result: 

This is similar to the expression obtained by Avdonin 
[14] by different means. Equation (25) is valid for 
arbitrary U, in contrast with the solution developed in 
2.1.1 where the condition U > 0 was necessary for the 
existence of a non-trivial solution. The latter re- 
striction, of course, is of minor practical significance. 

The integral in (25) simplifies considerably when Fe 
= 1 to yield: 

T(t,x) = erfc -5 
i ) 2Jr, 

u < 0 (26) 

T(t,x) = e-* erfc 5 
i > 2Jr 

U < 0 (27) 

(see afso 2.2.3.1 f. In Fig 6(a) we plot profiles of T for 
different times and Pe = 1 in the case U > 0. As 
illustrated by Fig. 6(b) the profiles obtained from (26) 
are close to Lauwerier’s profiles (15) except for large x, 
when the heat wave penetrates farther into the un- 
heated zone. As Pe increases, however, the two profiles 
approach each other and as Pe + x: they eventually 
coincide. The convergence is faster for higher values of 
Pe. It follows that the Lauwerier solution is adequate 
when Pe >> 1. On the other hand, for low injection 
rates, Pe is of the order of unity and solutions given by 
equations (25) or (26) are more accurate. 

0.6 

T 

0.0 
0.0 4.0 8.0 12.0 

x 

Fro. 6(a). Temperature profiles of equation f26) for U > 0, 
Pe = 1 and t = 0.X, 0.5, LO, 2.0, 4.0, 8.0. 

‘.61 

FIG. 6(b). Temperature profiles of equation (26) for U > 0, 
Fe = 1, (upper curve) and equation (15) (lower curve), at 

t = 8.0. 
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2.2.2. Constant front velocity, asymptotic solutions for 
arbitrary Pe. The inclusion of horizontal conduction in 
the case of a constant velocity boundary allows for the 
derivation of explicit but rather cumbersome ex- 
pressions. To simplify the discussion we elect to study 
the simpler problem of asymptotic solutions for large 
times. Introducing the moving coordinates t, 5 = 
.Y - cr, we rewrite (5) and the B.C. as: 

+z 
JR 

(28) 

t = 0, T= 0; 
<- CIC., T-to; 
5 = 0, T= 1; 

where c is the velocity of the boundary. As t-r x,, 
equation (28) becomes 

dT 1 a2T c 
(75=gY’F+jlL 

lim 
t - 1 s 

1 g [< + c(t - T)] . ~ Jlpl T) ’ (29) 

or after rearrangement 

i 1 
6-c g=$$ 

J& 
+i 

\in 

with B.C. : 

c-+ TJ, T-+0; 
<=O, T=l. 

The solution of this integro-differential equation in 
one independent variable provides the asymptotic 
solutions. In constrast to (17), c is not bound by any 
constraint. 

Introducing the notation : 

where c # U/l V) and specifying without loss in gen- 
erality c > 0, we obtain 

cp(x) = p&(x) + $ ?’ = #(CT + x) $* (31) 
cl 

In Appendix A we show that equation (31) can be 
reduced to the ODE 

c#J “‘(X) - ; c/J”(x) + $8’(s) -t 
which admits the general solution 

$$(x) = 0 (32) 

#4x) = A, exp (zlx) + A, exp (QX) + A, exp (z3x) 
(33) 

where zi, z2, z3 are the roots of: 

1 2 c 1 i2 
Z 2-i -t-+=0. 

Returning to the original notation and integrating, 
we get a physically acceptable solution, 

T(5) = exp (~~5) (35) 

where zi is the real negative root of (34). Values of zi 
for various values of Pe, c are shown in Tables 1 and 2. 
As expected, the larger Pe and/or c is, the steeper the 
temperature gradient at the moving origin. The results 
obtained should agree with the solutions discussed in 
2.1.2. Indeed, when Pe -+ r/), then p--f 0 and (34) 
admits the unique solution z = - i2, hence 

T(S;Pe+x)=exp[-&<] (36) 

which is identical to expression (20). In Fig. 7 we show 
asymptotic profiles for various Pe. As Pe increases, at 
constant c -Z 1, the temperature profiles approach the 
solution (20) which was obtained by neglecting hori- 
zontal conduction. The agreement is better for large Pe 
and small c (Table 2). On the other hand, for small 
values of Pe (Table 2), the difference between the 
gradients given by equations (20) and (35) is significant 
and should be properly taken into account when 
designing a thermal recovery process at low injection 
rates. 

The profiles (35) can be used to describe the 
temperature distribution in thermal processes in which 
the front has a constant (or “slowly” varying) velocity 
and the injection rates are low [Pe = O(l)], or the 
injection parameters do not satisfy constraint (7). In 
this sense, they complement the quasi-steady results 
obtained in 2.1.2 for the case of negligible horizontal 
conduction (high injection rates). An application of 
this quasi-steady state approximation in estimating 
the velocity of the steam front at early and intermediate 
times of a steam drive was presented in [4]. The 
applicability of the approximation clearly requires 
that the characteristic time of approach to the asymp- 
totic solution is small enough compared to the time- 
scale of change of the front velocity. To obtain an 
estimate of the latter characteristic time one could rely 
on the analysis presented in 2.1.2 (Pe -+ 8~) and on the 
following discussion of the special case Pe = 1. The 
desired estimate for other values of Pe is expected to lie 
between the results corresponding to the two extreme 
cases Pe = ~1, Pe = 1. One can then develop a cri- 
terion that defines the region of validity of this quasi- 
steady state approximation [4]. 
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Table 1. Values of Z, for Various Values of Pe, c 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00 

Pe = 10 -0.12311 -0.31009 -0.60185 -1.0724 -1.8591 -3.2130 -5.5414 -9.3114 - 14.7236 - 25.5443 
Pe = 31.7 -0.12342 - 0.31225 -0.61117 -1.1070 -1.9842 -3.6819 -7.4074 -16.9905 -43.627 - 100.0000 
Pe+ z -0.12345 -0.31250 -0.61224 -1.1111 -2.0000 -3.7500 -7.7777 -20.0000 -90.000 --5 

Table 2. Values of Z, for Various Values of Pe, c 

C 

100 
10 

1 

0.1 

0.1 

_ Pe ZI 

10 -9910 
3.17 -993 
1 -100 
0.317 - 10.21 

10 -910 
3.17 -93 
1 - 10 
0.317 -1.11 

10 -4.64 
3.17 -4.64 
1 -1 
0.317 -0.21 

10 -0.1231 
3.17 -0.1231 
1 -0.1 
0.317 - 0.050 

Pe + cc -0.1234 

We complete the study of heat transfer in the hot 
liquid zone by considering a special case (Pe = 1) 
which leads to exact solutions and may be considered 
as representative of thermal recovery processes at low 
injection rates. 

2.2.3. Pe = 1, arbitrary velocity. When Pe = 1 the 
integro-differential equation (5) admits a sample sol- 
ution. To show this we take the Laplace transfor- 

mation of (5) with respect to time. The resulting 
expression is generally very complicated but for Pe 
= 1 it assumes the simpler form 

(37) 

where A(s) is an unknown function to be determined 
from the boundary conditions. When U > 0 (37) 
becomes 

L,{T} = A(s)exp[-xJs] (38) 

which implies that T(t,x) satisfies the pure heat 
conduction equation 

c3T a2T 
z=ax’ (39) 

In other words, in the special case Pe = 1, the lateral 
heat losses are exactly balanced by the convective heat 
flux and, as a result, heat transfer is governed by pure 
heat conduction along the horizontal coordinate x. On 
the other hand, when U < 0 (e.g. reverse combustion), 
(37) implies 

ST 8T a2T 
%-2&=,x,+T. (40) 

Before exploring various special cases of boundary 
motion, we restate the conditions under which the 
interesting case Pe = 1 arises. By definition, Pe = 1 
implies / UI = 2k,/hJ(a/a,), which for the usual case 
tl=c(r shows, in a qualitative sense, why convection 

counterbalances heat losses to the surrounding 
formations. 

FIG. 7. Temperature profiles of equation (36) for Pe = 1,3.17, 10,31.7 (upper four curves), and of equation 
(20) for c = 0.1 (lower curve). 
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Fixed boundary. This problem has been discussed in 
2.2.1 for the case of arbitrary Pe. The results of that 
section take a particularly simple form when Pe = 1. 
In light of the above analysis one can easily deduce that 
expressions (26), (27) are the solutions of equations 

(39) and (40). 

Constant front velocity. When u(t) = c we can use the 
moving coordinates t, 5 = x - ct to obtain the familiar 
equation 

dT iiT ?12T 

t-c-=T7 al at 
u>o (41) 

which by direct application of the Laplace transfor- 

mation yields : 

+ exp [ - c(x - ct)] 

, ct I s. (42) 

In the limit of large times this reduces to the steady 

state solution : 

T= exp [ - c(x - ct)] (43) 

in accordance with (35). The conductive heat flux 
through the origin 

i3T 

J 
c2t 

ax x=c, =C+xtexP -- I 1 4 

- Cerfc CJf 
2 ( > 2 

(44) 

tends asymptotically to -c. One can accordingly 
estimate the characteristic time of convergence to be of 

the order of 

in dimensional variables. This time is inversely pro- 
portional to the square of the boundary velocity c, just 
as in the case Pe + PL (see 2.1.2). The characteristic 
times for Pe = 1 and Pe = ^I, are close to each other 

A comparison of the heat flux given by (44) with that 

when c is small but differ considerably when c 

given by (21) which corresponds to Pe + -/I (no 
horizontal conduction) is of some interest. When the 

approaches 1. No comparison is possible when c > 1 

front velocity is small, the two expressions are identical 
and horizontal conduction has almost no effect on the 
conductive heat flux through the steam front despite 

since the analysis in 2.1.2 applies only when c < 1. 

the low injection rates. 

Front velocity v(t) = a/ Jt. In the content of thermal 
recovery applications it would be useful to derive the 
temperature distribution for cases where the charac- 
teristic times for changes in the front velocity and the 
heat transfer are comparable. Analytical solutions in 

this case are possible when the front velocity has the 
form 

u(t) = a/ Jt 

where a is an arbitrary constant. The practical impor- 

tance of these fronts in l-dim. steam injection has been 
emphasized in 2.1.3. and is further discussed in [4]. 

In moving coordinates t, 5 = x - 2aJt the heat 
equation (39) becomes 

aT a dT a2T 

at Jt’Z=p 

the solution of which is obtained as before 

erfc a (45) 

with a dimensionless conductive flux at the origin 

aT 1 exp(-a2) 

ax x = Za,:, = J71f erfc a (46) 

A remarkable similarity between expressions (46) and 

(24), (Pe -+ x), exists in the limit of large times. As t 
increases, the front velocity in 2.1.3 approaches a/ Jt 
while the dimensionless conductive heat flux in (24) 
approaches that of (46). The implication of this result is 
quite significant : it shows that in cases where the front 
velocity takes the asymptotic form a/Jt the heat 
transfer is not appreciably influenced by the inclusion 
of horizontal conduction. This conclusion is expected 
to hold for any value of Pe in the range [ 1, x]. On the 
other hand, one should be careful not to discount the 
effect of horizontal conduction on the rate of con- 
vergence to the asymptotic state. It turns out that the 
larger the value of Pe, the faster the convergence to this 

state, while for Pr = 1 the convergence is very slow and 
the asymptotic state cannot be attained within practi- 

cally realistic times. 

3. CONCLUSIONS 

(1) Heat transfer in the hot liquid zone of a l-dim. 
reservoir undergoing a thermal recovery process in- 
volving a moving condensation front can be described 
by a single integro-differential equation with a moving 

(a) When the dimensionless parameter Pe, that 

characterizes the importance of horizontal convection 

boundary. Closed form expressions for the tempera- 

relative to horizontal conduction, is large (high in- 
jection rates). Analytical solutions have been obtained 

ture distribution can be derived for the following 

for a fixed front, a constant velocity front and a front 

cases : 

moving according to the form a/ J(t + a*). The result- 
ing expressions are useful in modelling hot waterflood, 
steam injection and combustion (both forward and 
reverse) under high (typical) injection rates. 

(b) When horizontal conduction cannot be neglec- 
ted (low injection rates), quasi-steady state tempera- 
ture profiles have been derived for a front moving at 
constant velocity. Together with the quasi-steady 
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profiles for Pe + cc these expressions are useful in 
describing the heat transfer in the hot liquid zone at 
early and intermediate times. 

(c) For the special case Pe = 1 representative of low 
injection rates particular solutions have been obtained 
for fixed boundary, constant front velocity and front 
velocity equal to a/Jt. Possible applications include 
hot waterflood, steam injection or combustion, at low 
injection rates. 

(2) When the front velocity does not assume the 
above profiles, analytical solutions are generally un- 
attainable. However, the integro-differential equation 
describing heat transfer can still be reduced to the heat 
conduction equation with a moving boundary in the 
special cases Pe -+ m,, Pe = 1, which can be treated by 
well established numerical techniques. 

(3) Comparison of the results obtained in the 
various cases above indicates that : 

(a) Under normal injection conditions Pe >> 1, the 
effect of horizontal conduction is insignificant. Thus, it 
can be neglected in calculations, provided that the 
operational parameters satisfy the constraint (10). 

(b) Even at low injection rates, horizontal con- 
duction makes a negligible contribution under the 
conditions of small and constant velocity or at large 
times in the case of fronts asymptotically behaving as 

a/Jr. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
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APPENDIX A 

Introducing the Weyl transform (Erdelyi ef al. [15]) of 
order f defined by 

we write equation (31) as 

4(x) = /l@(x) + IWi’2{4(x)}. (A.1) 

Taking the W”’ transform of (A.l) and rearranging yields 

lF{$(x)} = pW”Z{@(x)} + I &5) d5. (A.2) 

d(x) - &“(x) = ~~~“2{~‘(x)} + 1’ 
s 

m 4(l) d& (A.3) 
X 

Using the identity 

& W”‘{C#l(X)} = W”‘{f$‘(X)) (A.4) 

in (A.l) and combining with (A.3) we obtain 

a 4(X) - &‘(x) = p[@(x) - !@‘(x)] + A2 

After differentiation 

b(5) d4. (A.5) 

O”‘(X) - ; @yx) + $ f#qx) + S+(x) = 0 64.6) 

which is the desired ordinary differential equation. 
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TRANSFER-f THERMIQUE DEVANT DES FRONTS DE CONDENSATION MOBILES DANS 
LES PROCEDES D’EXTRACTION THERMIQUE DE L’HUILE 

R&me-On itudie le transfert thermique dans la zone liquide qui precede un front mobile de condensation 

dans un reservoir monodimensionnel d’huile lors dun pro&de d’extraction thermique par courant d’eau 

chaude, ou par injection de vapeur d’eau ou par combustion in situ. On developpe un modele qui traite du 

transfert thermique par conduction et convection horizontales dans le reservoir et par conduction verticale 

(conjugee) autour du reservoir pour tenir compte des pertes de chaleur laterales. Le modele formule par une 

equation integro-differentielle qui conduit a une representation intigrale des pertes thermiques laterales pour 

une region a front&e mobile. En fonction de la grandeur du nombre de Peclet, de la vitesse du front, plusieurs 
expressions analytiques dtcrivent la distribution de temperature dans la zone liquide chaude. La discussion 
insiste sur le cas Pe >> 1 (grands debits inject&) et Pe = 1 (faibles debits injectis). Le cas de Pe quelconque est 

traitt par une approximation d’itat quasi-stationnaire, 

WARMEUBERGANG VOR WANDERNDEN KONDENSATIONSFRONTEN 
IN THERMISCHEN OLGEWINNUNGSPROZESSEN 

Zusammenfassung-Dieser Bericht befabt sich mit der Warmeubertragung im Flussigkeitsgebiet vor einer 
fortschreitenden Kondensationsfront in einem eindimensionalen olreservoir bei thermischen Forderprozes- 
sen wie HeiBwasserflutung, Dampfinjektion oder Verbrennung vor Ort. Ein mathematisches Model1 wurde 
entwickelt, mit dem im Falle der Warmeiibertragung durch horizontale Warmeleitung und Konvektion im 
Reservoir sowie durch vertikale (konjugierte) Wlrmeleitung in die Umgebung der Formation des Reservoirs 
die seitlichen Warmeverluste bestimmt werden konnen. Das Model1 wurde in Form einer Integral- 
Differentialgleichung dargestellt, welche die integrale Darstellung der seitlichen Warmeverluste fur ein 
Gebiet mit beweglicher Grenze wiedergibt. Entsprechend der Peclet-Zahl und der Geschwindigkeit der 
wandernden Front wurden zahlreiche analytische Ausdrticke, die die Temperaturverteilung in der heiBen 

Fliissigkeitszone heschreilxn, erhalten. Es werden inshesondere die Falle Pe >> 1 (hohe Injektionsgeschwin- 
digkeiten) und Pe = 1 (niedrige Injektionsgeschwindigkeiten) betrachtet. Der Fall beliebiger Pe-Zahlen wird 

naherungsweise quasistationar behandelt. 

TEIIJIOHEPEHOC HEPEA J(BMJKYII@IMCII @POHTOM KOH~EHCAHWM 
B HPOHECCAX TEfIJIOBOH PEFEHEPAHHH MACEJI 

AtutoTaqnn - MccnenyeTcn TennonepeHoc a TH~KOCTR nepen I$POHTOM kouneucaumi npe ero 0n~0- 

t4epHoM nmI*eHmi II pesepayape c h4acnoM B npouecce TennoBoi? pereHepauuR non neiicTaaeM noToKa 

rOpFIefi BOflbI, BnyBa IIapa IUIA JIOKa,IbHOrO rOpeHWI. npCnJIOXeHa MOAeJIb, YqIITbIBaIOIIIaII IIepeHOC 

TemIa TeII,IO”pOBO~HOCTbIO II KOHaeKuEIefi B rOpII3OHTaJIbHOM HaIIpaBJIeHNEI B pe3epByalLX A TeIIJIO- 

IIpOBOJIHOCTbIO a BepTAKa,IbHOM HarIpaBneHIIII B OKpyXaIOmeii pe3epByap ClXXe, KOTOpaa II03BOJIlleT 

paCC%ITaTb 60KOBbIe IIOTepII Te”JIa. Monenb OCHOBaHa Ha HHTerpO-LIEI~~epeHIIIIanbHOM ypaBHeHIIII, 

a KOTO~OM AcnonbsyeTcs HHTerpanbHoe BbIpameHue &m 6oKoBbIx norepb Tenna B o6nacTA C LtBWKy- 
meRCa rpaHIII& B 3aBACRMOCTH OT BeJIWIAHbI ‘IIiCJIa neKJIe H CKOpOCTH ABIIEeHAs +pOHTa BbIBeAeHbI 

pa3naqHbIe ananrirnqecxne sbtpawtemia, onucbmaiomrie pacnpenenemie rebrneparyp B HarpeToir win- 

KOCTII. Oco6oe BHHMaHIie yneneH0 CnyqasM Pe 9 1 (6onbmaa CKopocTb BLIyBa) II Pe = 1 (MaJIaII 

CKOpOCTb BAyBa). CJIyqati IIpOII3IIOJIbHOrO 3Ha’leHIIs WCna &’ aHX”EI3MpyCTCR C IIOMOmbIO KBaJN- 

CTaIIROHapHOr0 IIpEI6JIIIXeHIUI. 


